
Int. J. Inf. Secur. (2011) 10:1–14
DOI 10.1007/s10207-010-0115-0

REGULAR CONTRIBUTION

A case study in hardware Trojan design and implementation

Alex Baumgarten · Michael Steffen ·
Matthew Clausman · Joseph Zambreno

Published online: 3 September 2010
© Springer-Verlag 2010

Abstract As integrated circuits (ICs) continue to have an
overwhelming presence in our digital information-dominated
world, having trust in their manufacture and distribution
mechanisms is crucial. However, with ever-shrinking tran-
sistor technologies, the cost of new fabrication facilities is
becoming prohibitive, pushing industry to make greater use
of potentially less reliable foreign sources for their IC sup-
ply. The 2008 Computer Security Awareness Week (CSAW)
Embedded Systems Challenge at the Polytechnic Institute of
NYU highlighted some of the vulnerabilities of the IC sup-
ply chain in the form of a hardware hacking challenge. This
paper explores the design and implementation of our winning
entry.

Keywords Hardware hacking · Trojans · Security · FPGA

1 Introduction

Consider a hypothetical scenario1 in which a government
team is tasked with the design and test of a new crypto-
graphic device, code-named Alpha. The Alpha device (which
is expected to be in heavy use and hence is of high value to the
sponsoring government) allows soldiers to transmit messages
securely to other soldiers and their command station. Alpha
has returned from the fabrication facility and is waiting for
the team’s approval to ship. From a testing and verification
perspective, when the highly sensitive nature of the device is
considered, several complex questions arise. How much con-
fidence does the team have that the Alpha is ready? Even if

A. Baumgarten · M. Steffen · M. Clausman · J. Zambreno (B)
Electrical and Computer Engineering,
Iowa State University, Ames, IA, USA
e-mail: zambreno@iastate.edu

functional requirements pass, can one be sure that there is no
additional logic that is hidden from the tests? How much trust
is there in the design chain? What if something malicious has
been added?

At the Embedded Systems Challenge, part of the 2008
Computer Security Awareness Week (CSAW) [1] at the Poly-
technic Institute of NYU, this exact scenario was proposed.
Several student-led teams from around the country assumed
the role of the hardware hackers that had been able to gain
access to the HDL source code for the Alpha. With this
source code in hand, each team had one month to imple-
ment as many undetectable hardware Trojans as possible. A
hardware Trojan is a malicious modification to the circuitry
that compromises the integrity of the original design, usu-
ally to the attacker’s benefit. The Alpha device, augmented
with Trojans, had to pass a set of functional tests, use the
same reference power, maintain the configuration memory
usage, pass a brief code inspection and be undetectable by
a general user. With these requirements in mind, our team
from Iowa State University designed a wide set of applicable
Trojans and performed a proof-of-concept implementation
using a provided Field-Programmable Gate Array (FPGA)
board. This paper describes our winning efforts in detail.

2 Competition details

The CSAW Embedded Systems Challenge began on Sep-
tember 2008, concluding a month later in New York. Each
team received a BASYS development board [12] contain-
ing a Xilinx Spartan FPGA along with basic peripheral I/O.
Figure 1 shows a schematic and picture of our experimental

1 While seemingly far-fetched, this hypothetical mirrors real-world
events, as is highlighted in Sect. 3.

123



2 A. Baumgarten et al.

XILINX
Spartan 3E

DIP Switches Push Buttons

Seven Segment 
Display

VGAPS/2

Power

LEDs

RS232

Expansion Headers

JTAG

USB

(a) (b)

Fig. 1 a Diagram of components used from the BASYS board; b Experimental setup

setup. The original design of the Alpha required a PS/2 key-
board connected to the board for input and a VGA monitor
along with a serial connection for output. Four other buttons
changed the state of the system. Xilinx ISE 10.1 was used
as the development environment for the mixed-mode HDL
code as well as for the generation of the FPGA bitstream
while Modelsim SE 6.3 was used for simulation. Addition-
ally, our team made use of an oscilloscope, power supply,
multimeter, thermometer, HAM radio, and custom circuits
to verify the functionality of each Trojan.

In normal operation of the Alpha device, messages typed
in plaintext on the keyboard display on the VGA monitor.
Pressing the encrypt button on the board sends the message
through an AES-128 encryption block with the key selected
by the 5 dip switches.2 Finally, the transmit button sends the
encrypted message over the serial port. The message receiver
uses the correct key to decrypt the message. For the pur-
pose of this contest, the organizers provided a C program
called encVerifier to receive and decrypt the message. For
scoring the designs, the judges evaluated the completeness
and uniqueness of the Trojans along with their ability to be
undetectable to a set of functional tests, deviation in power
consumption, deviation in bitstream size, and their ability to
pass a brief code inspection.

3 Background and motivation

3.1 IC supply chain overview

The integrated circuit (IC) supply chain is the process by
which a conceptual idea transforms into an IC. The pro-
cess starts with the IC designer who creates the register
transfer level (RTL) description of the IC according to the

2 There is an obvious cryptographic limitation in using 5 dip switches
to select unique 128-bit keys, but conceivably a more elegant model
could be used for obtaining the key in a production environment.

specifications of the project. This description, typically in
a form of a hardware description language (HDL), is the
intellectual property (IP) of the designer. When the design
stage is complete, the RTL moves into the synthesis stage
as it begins a series of electronic design automation (EDA)
steps using software tools from companies such as Cadence,
Mentor Graphics, and Synopsys in order to produce a final-
ized layout schematic (i.e. netlist). These steps begin with
logic synthesis which converts the RTL design into a directed
acyclic graph (DAG) representation. Logic optimization uses
complex heuristics to search for graph transformations in
order to optimize for a particular metric. Next, mapping heu-
ristics convert the graph into primitive gate representations.
Placing and routing give each gate a physical location on the
IC and establishes their interconnections. After the synthe-
sis is complete, the foundry receives the synthesized design,
a blueprint of the circuit. The foundry can then prepare the
masks and tool the machinery. Finally, the completed ICs are
distributed to the end users.

In the past, each hardware company could use an in-house,
vertical process for both design and fabrication. However,
as transistor feature sizes and time-to-market continued to
shrink, coupled with the demands for lower-power, high
performance ICs, the cost to establish a full-scale foundry
became prohibitive (upwards of $4 Billion) for many compa-
nies. Because of these factors, the IC supply chain flattened,
clarifying the roles of the various parties. Hardware IP ven-
dors emerged who specialize in designing functional units,
memories, and bus controllers. These vendors license their
technology to others for use in their own IC designs. The IC
design companies integrate third-party IP along with their
own IP to create an IC design. Finally, contract foundries
harness economies of scale as they spread the large capital
required to build the foundry among their clients.

The entire supply chain is vulnerable [25], but specific
attention must be focused on the HDL and the foundries.
In the same way that software describes what the pro-
gram should do and is vulnerable to malicious descriptions,

123



A case study in hardware Trojan design and implementation 3

the HDL describes the operation of the circuit and is vul-
nerable to the inclusion of malicious circuitry. An attacker
who is able to add circuitry to the design by means of the
HDL has limitless potential and flexibility. Since the attack
occurs very early in the process, discerning malicious intent
becomes very hard to detect.

3.2 Supply chain vulnerabilities

The concerns that arise from IC fabrication fit into three basic
categories: Metering, Theft, and Trust. Each of these catego-
ries broadly addresses the production of extra ICs beyond the
purchase order, unauthorized access to information including
the IP, and the tampering of ICs received from the foundry.
The 2008 CSAW competition focused on the issue of trust,
but a discussion of metering and theft rounds out the back-
ground.

3.2.1 Trust

As the trend of “fabless” semiconductor companies contin-
ues to increase, so does the trust placed in the hands of the
fabrication facilities as they handle the IP of the world’s IC
supply. Recent military equipment failures around the world
bring trust into the forefront as they are being tied to a hid-
den kill switch [5]. The kill switch, more generally a hard-
ware Trojan, allows remote interruption of functionality of an
IC. Other reports confirm that some chip manufacturers pur-
posely implant kill switches in select ICs in order to disable
the device if it falls into the wrong hands [5].

Even the United States Department of Defense has
assessed this threat through several initiatives. In Febru-
ary of 2005, the Defense Science Board released a report
entitled the “Task Force on High Performance Microchip
Supply” [10] which examined long-term trust and security in
the microchips used by the United States government. Their
conclusion: “urgent action is recommended.” Following this
report, a DARPA initiative, Trust in Integrated Circuits [9],
was started to provide more security to the supply chain.
The program is broken into three phases with industry and
government support at each step. The phases examine trust
in ASIC design, trust in untrusted foundries, and trust in
FPGA design, respectively. An independent effort with sim-
ilar intentions, the NSA program on Trusted Foundries [21]
sets certain standards of trust that must be established before
a foundry can receive a stamp of approval.

The category of trust can be broken by functionality into
three areas:

1. Thwarting the user’s plans: Affecting the operation of
the device either by making it function incorrectly or not
function at all. This form of attack is a Denial-of-Service

(DOS) where some subset of the functionality fails to
work as intended.

2. Gaining extra knowledge: Leaking sensitive information
not originally intended to be leaked from the device. This
includes allowing a malicious user to capture the plain-
text messages, the key used to encrypt those messages
or any other information that would allow that gives the
malicious user more knowledge about the system then
originally intended.

3. Exercising additional functionality: Utilizing the device
for a function in which it is not intended to be utilized.
In this attack, the device may function correctly, produce
the correct outputs, and not leak information, but it still
may be used in a manner not intended by the original
specifications.

3.2.2 Metering

The second category of concern, metering, deals with the
number of ICs produced and for whom. The concept of water-
marking has been applied to several technologies including
hardware IP [24]. In this case, it is only a partial solution
that identifies the IP and not the IC. The passive approach
uniquely identifies each IC and registers that identity. Later,
suspect ICs are checked for proper registration. The unique-
ness derives from a manufacturing variability like the thresh-
old mismatch in MOSFET arrays [19], variability of silicon
[20], delay characteristics [18], and Physical Unclonable
Functions (PUFs) [27,28] and [26]. The other approach,
active metering, locks each IC until the IP holder unlocks
it. In [6], each IC generates a unique ID. The ICs begin in
a locked state, but the IP holder using an unique ID unlocks
the IC. [7] augments this process by adding replicated states
in a FSM requiring a similar unlocking mechanism.

3.2.3 Theft

Although this category does overlap with metering, it is not
necessarily equivalent. Where metering tries to control who
and how many ICs are created, information theft more gener-
ally encompasses gaining information not originally intended
to be disseminated. The creation of extra ICs by unauthorized
users is one of the direct consequences of stealing the netlist,
but other information such as hardcoded secrets, IP cores,
and algorithms may also be the target.

Many different watermarking and fingerprinting technol-
ogies add a unique signature at varying levels to the IP. This
signature allows the IP to be traced through the IC supply
chain and if stolen, points directly to the source of the leak.
The main shortcoming of these approaches is that a unique
signature does not protect the IP from theft, except as a deter-
rent; rather it provides a basis for litigation once the crime
has been committed.

123



4 A. Baumgarten et al.

Fig. 2 A taxonomy of an
attacker at various levels of the
IC supply chain including their
motivation and possible
protections

The authors in [16,17] target the IP for FPGA’s by utilizing
the remaining LUTs to encode information. State transition
graphs (STG) that exhibit rare patterns are added to a design
by [22,23,29]. Extending upon this idea, [2–4], search the
existing FSM for useable transitions. Others such as [8,15]
utilize the NP-complete design space of the algorithms driv-
ing the EDA to provide the flexibility for watermarking.

4 Attacker taxonomy

Attackers can be classified based on their location in the sup-
ply chain, as well as their access level. From this assump-
tion, this section describes a list of what an attacker might
gain in terms of the previously stated goals and the possi-
ble protections to stop or hinder an attacker. In each of the
cases, the attacker may be a mole, a disgruntled employee, a
competing company, a hacker, or a terrorist. We assume that
the attacker has significant resources, but they are limited
and that the benefit from attacking the IC supply chain must
outweigh the resources expended. Along with the taxonomy
descriptions, Fig. 2 shows the stages of the IC supply chain,
the attacker at each stage, and the information gained in each
of the three attacker goals.

4.1 Design attacker

Who: A design attacker enters the supply chain during the
design phase, between the conception of the idea and when
the idea has fully materialized in the form of an RTL descrip-
tion. This attacker has full access to the design files and source
code. The attacker is likely an insider given the access inten-

tionally although they may also be a more traditional hacker
that compromises a computer system.

What is gained:

– Trust - If the attacker has write access, they can add com-
ponents to or remove components from the design. With-
out that access, the design can be analyzed in order to
facilitate a future attack.

– Metering - With access to the source code, the attacker
can create extra ICs with access to the foundry or enough
resources to fabricate the ICs.

– Theft - Since the attacker has access to the entire design
and source code, IP theft is trivial.

Protection: The measures necessary to protect computer sys-
tems that store IP are too numerous to mention and are outside
the scope of this paper, but hardened security-conscious net-
works can aid in IP protection. In the same manner, protecting
IP from those who design it is also very difficult. The addition
of Trojans may be minimized by careful code reviews and
adequate checks and balances or through the use of tools such
as TRUTH [11]. The TRUTH tool analyzes HDL source code
pointing out potentially unsafe structures that may indicate a
Trojan. Protecting from a design attacker requires a holistic
security policy in order to minimize the risk.

4.2 Synthesis attacker

Who: A synthesis attacker usually appears well before the IP
is actually synthesized. By compromising the computer-aided

123



A case study in hardware Trojan design and implementation 5

design (CAD) tools or the scripts that run them, the attacker
can modify the IP at any level from preprocessing the HDL
all the way to the generation of a netlist [25]. Since the attack
happens during the synthesis phase inside the design house
on a usually trusted platform, it is less suspicious and very
difficult to discover as the logic is embedded into the design.
Also, with the increase in industry acceptance of open-source
CAD tools, a synthesis attacker could compromise a system
by hosting malicious pre-compiled binaries or direct modifi-
cation of the source code. Finally, the automated scripts are
vulnerable in several ways to an attacker.

What is gained:

– Trust - The attacker can add Trojan logic to the design or
cripple critical logic such as a random number generator
used for seeding a cryptographic unit.

– Metering - By stealing the IP, the attacker could create
extra ICs with the ability to fabricate them.

– Theft - The attacker has access to all levels of the CAD
tool flow and can steal any information that exists in the IP.

Protection: Because of the prohibitive cost to design all of
the CAD tools in-house, there is a necessary dependence on
CAD software creators. A level of trust needs to be estab-
lished with the creators of the CAD tools and a holistic secu-
rity policy established to hinder in-house tampering of the
CAD tools.

4.3 Fabrication attacker

Who: A fabrication attacker is usually external to the IP
designer as contract foundries produce much of the world’s
ICs. After the IP designer creates, synthesizes, places and
routes their design, they generate a physical layout geometry
file that is the exact blue print of the IC. In the horizontal
business model, the foundry receives the complete design
along with its specifications.

What is Gained:

– Trust - The foundries necessarily have exposure to the
layout level geometry and masks, which affords them the
ability to add or remove components to every IC through
layout geometry modification. Alternatively, after the cre-
ation of ICs, a select number of ICs may be modified using
a Focused Ion Beam (FIB).

– Metering - The foundry produces ICs in large vol-
ume and once production begins, creating extra ICs
beyond the purchase order is inexpensive and trivial. The
non-recurring engineering (NRE) cost paid for by the IC
designer is the most costly part of the process. Current IC
fabrication practice does not incorporate any measures to

limit the number of ICs created by a foundry beyond the
use of contractual agreements.

– Theft - With the layout level geometry of the entire design,
it is feasible, albeit difficult, to reverse-engineer back to
a netlist or even further to HDL.

Protection: Significant research has been done in each of
these three areas. For metering, both passive and active
schemes have been studied that leave the fabricated IC in
a locked state and can meter the number activated instead
of the number produced. Theft can be controlled by one of
the watermarking approaches discussed previously. Finally,
trust in the IC is ensured by either a secure framework within
which the IC is created or running a post-fabrication verifi-
cation tool.

4.4 Distribution attacker

Who: A distribution attacker enters the supply chain after
the fabrication and packaging of the ICs. They have access
to neither the HDL source code, nor the layout level geome-
try. This type of attacker is likely to be associated with either
the IC distributors or end users. The attacker probably does
not have a set of input/output test vectors, but instead a set
of specifications to which the IC is supposed to perform.

What is gained:

– Trust - An attacker at this stage is severely limited in
their freedom, which raises the granularity of an attack.
Instead of being able to deal with individual gates, they
must deal with a per-package or possibly per-component
level of granularity.

– Metering - To copy the IC requires reverse engineering
the design to re-establish a netlist from which ICs can be
fabricated. This is considered to be a difficult yet feasible
task.

– Theft - Information can be stolen using various methods
by either deconstructing the IC or passively observing the
IC through side-channel attacks both of which have been
extensively researched.

Protection: Besides the difficulties imposed by small feature
sizes, many schemes have been implemented in academia and
commercially to address specific vulnerabilities of this type.
These include anti-tampering packaging, chemical passiv-
ation, and obfuscation against side-channel attacks [13].

5 Threat model

Before discussing possible attacks against the Alpha device,
the attacker needs to be defined. We assume the attacker

123



6 A. Baumgarten et al.

has significant resources temporally, fiscally, and compu-
tationally, but that these resources are finite. The attacker
is motivated by either profit or a desire to harm the device
owner, but the potential must outweigh the cost to insert a
Trojan. By the nature of the contest, the attacker enters at
the design stage and attempts to compromise the project’s
trust. The mole has gained access to the source code and
a method for reinsertion after it has been modified (which
will occur before fabrication). The goal of the attacker is to
modify the source code to insert a Trojan that will thwart
the user’s plans, gain extra knowledge, or exercise additional
functionality.

5.1 Constraints

Even though the CSAW contest left the attacker’s goal open-
ended in order to allow for flexibility and creativity in the
solutions, we can define some constraints so that our solu-
tions can be classified. These constraints are not hard require-
ments imposed by the contest but are a discussion of factors
that can be explored.

5.1.1 Proximity

After manufacturing the Alpha device with the Trojan, the
Trojan must do something useful for its creator. The proxim-
ity of the attacker once the Trojan is active is a key constraint.
We classify our solutions into four proximity categories:
“physical access”, “near the device”, “near a communica-
tion channel”, and “far away”. Physical access means that
the attacker can physically interact with the device. They
could have captured one of the Alpha devices being used in
the field, routinely work with the device even in the pres-
ence of others, or have momentary access. Near the device
means that the attacker can get close enough to interact with
the device. This could take the form of some wireless trans-
mission to or from the device or being able to see or hear
the device. Although the distance is vague, it only represents
a proximity class. Near a communication channel implies
that the interaction with the device does not occur directly
but rather over some communication channel. An attacker
that is near the communication channel, even if the device is
around the world, still has the ability to interact with it. This
scenario could take the form of message transmissions over
the internet or through satellites. Finally, far away means that
the attacker does not have access to the Trojan physically or
through any of its communication channels. Imagine a Denial
of Service (DOS) triggered by an event outside the control
of the attacker, the temperature of the room, the number of
bits encrypted, etc. For this contest, each solution applied
different proximity constraints mentioned during the attack
discussion.

5.1.2 Stealth

The Trojan must be well hidden in the HDL code before it
gets a chance to be synthesized, and then must remain hid-
den throughout the testing and operation of the device. The
worth of a Trojan is directly connected to its stealth as a
discovered Trojan ceases to be of value to the attacker. The
contest defined the requirements for the stealth of the HDL
code as being able to pass a brief code inspection and for
the stealth of the synthesized code as being able to pass a set
of functional tests, use the same reference power, maintain
the configuration memory usage, and be undetectable by a
general user. Although these requirements are subjective, it
was left to the judges to score.

Our team spent significant effort hiding the Trojans, in
order to pass the code inspection. The Trojan description sec-
tions do not describe many of the hiding details, as they deal
primarily with specific wires and modules that are not gener-
alizable to other hardware Trojan circuits. In general, meth-
ods such as extending bus widths, rerouting signals, utilizing
naming conventions, decentralizing the Trojan logic, writ-
ing misleading comments, and exploiting language nuances
helped hide the various attacks.

The synthesized code remained undetectable to functional
tests as none of the Trojans modified the core functionality of
the Alpha device.3 The reference power and memory usage
were maintained by decreasing the footprint of the Trojan.
By using a trigger, the Trojan could remain dormant and
therefore not incur a power penalty. Also, piecing together
the Trojan out of built-in functionality had a twofold benefit
of increasing HDL stealth and minimizing power and mem-
ory consumption. A complementary approach was taken by
the second-place team from Yale University, in which the
original Alpha code base was aggressively optimized in order
to provide slack (in terms of lines of code, logic resources,
and power consumption) for the attacker to design and imple-
ment various hardware Trojans [14].

5.2 Triggering

Some Trojans begin working on power-up while others
remain dormant until explicitly instructed to begin. This
instruction is the Trojan’s trigger and comes in as many forms
as the Trojan itself. The trigger is closely tied to the proximity
discussed previously as the attacker governs the trigger. The
trigger mechanism is decoupled from the Trojan, allowing
the two to be interchanged, since it is only the trigger event
that the Trojan is waiting on, not the details of how it was
triggered. We focused our efforts on the actual Trojan attacks

3 The DOS attack by its nature affects the functionality of the device.
By using a triggering mechanism, the DOS Trojan can remain dormant
until a point in time after the functional tests.

123



A case study in hardware Trojan design and implementation 7

and not on various triggers. Although we added triggers to
our Trojans, much more sophisticated triggers could replace
our simple ones.

The trigger, like the Trojan, needs to be well hidden to
avoid detection, but it also needs to be deliberate so that spu-
rious events do not accidentally set it off. The trigger mech-
anism must take into account the proximity the attacker will
have to the device to determine if the attacker will directly
engage the trigger or if another condition will set it off. This
could be a time delay or the assertion of a condition that will
occur after some time such as number of keystrokes, dis-
tance moved (if for instance the device had a GPS unit), etc.
If the attacker had access to a communication channel, then a
unique packet could trigger it. With closer proximity access,
even more possibilities exist: controlling the light to an opti-
cal sensor, a specialized memory card could be inserted into
the device, a rare pattern could be entered from the keyboard
or any of the buttons on the device, etc. There are endless trig-
gering events, but they all serve the same purpose, to notify
the Trojan of an event.

6 Implemented attacks

6.1 RS232 end sequence information leakage

6.1.1 Explanation

We created three Trojans using the RS232 module to mod-
ify the transmission of data (Fig. 3). Each Trojan requires
proximity to the communication channel as the information
leaks during communication with other devices. The first
Trojan takes advantage of the message structure beginning
with the key index used to decide the key needed to decrypt
the message. The dip switches found on the physical board
determine the key index by adding some entropy to the mas-
ter key. Following the key index is the ciphertext, the original
message encrypted using the AES-128 algorithm along with
the private key. Finally, the message terminates with an end-
ing sequence composed of fourteen bytes of 0xFF.

The program used to decrypt the messages on the receiver
side, encVerifier, was provided as part of the contest. It uses
the key index to know the encrypting key and consequently
the decrypting key. This does trivialize the security, but pro-
vides a convenient key distribution mechanism. The encVeri-
fier program reads the cipher text using the ending sequence

Fig. 3 RS232 Message format

to determine the variable length. The source code for the
encVerifier program checks for the presence of five bytes of
0xFF in the last available eight-byte segment. It then loops
through the data from the last read byte to the first read byte
in the eight-byte sequence and increments a counter for each
byte of 0xFF observed. If at least five non-consecutive bytes
of 0xFF have been read in the last eight-byte segment, the
encVerifier program decrypts the message and displays it to
the screen.

Exploiting the message structure, specifically the ending
sequence, allows for two attacks. The first attack places infor-
mation after the transmission of the ending sequence, but still
in the original message. This attack is flexible in the infor-
mation and the amount of information transmitted. We chose
to leak the entire key at the end of one message. The enc-
Verifier program does not notice extra information placed
on the RS232 stream since it stops reading from the stream
after detecting the ending sequence. A malicious program
monitoring the stream would be able to read past the ending
sequence and receive the extra data at the end of the message.

6.1.2 Results

After enabling the Trojan, the ending sequence is embed-
ded with extra data. Using the original encVerifier program
produces the expected output as it ignores the added infor-
mation. However, the malicious encVerifier program ignores
the ciphertext message and recovers the leaked key.

6.2 RS232 end sequence information leakage 2

6.2.1 Explanation

The second exploit to the end sequence takes advantage of the
number of ending sequence bytes sent. Since the ciphertext
can be of variable length and the encVerifier program checks
for the presence of five bytes of 0xFF in the last eight-byte
segment, more than five bytes of 0xFF must be sent, but less
than the fourteen bytes of 0xFF that are sent by the refer-
ence system. With a variable length message, there are eight
possible locations within an eight-byte block where the end
sequence can start. Figure 4 depicts each of these cases, where
the fourteen byte wide table represents the fourteen bytes of
0xFF sent as the ending sequence of a message transmission,
the rows represent the eight cases, and the numbers in the
row represent the location of that byte in an eight-byte seg-
ment. The two shades of gray show adjacent messages and
the white cells are the five bytes of 0xFF that the encVerifier
program uses to determine the end of a sequence. The four-
teen bytes of 0xFF are more than enough to create an ending
sequence and other data can be contained in the original mes-
sage size as seen in Fig. 5. The markings in this figure are
the same as Fig. 4 with the addition of dotted white cells

123



8 A. Baumgarten et al.

Fig. 4 Ending sequence cases. Gray shading differentiates eight-bytes
segments. White indicates which bytes cause enc Verifier to stop receiv-
ing

Fig. 5 Ending sequence cases. Same coloring as Fig. 4 but the dotted
white cells indicate possible locations for hidden messages

representing the five bytes of data that could be used for add-
ing arbitrary information. In the latter figure, each case gives
the encVerifier program sufficient amounts of 0xFF bytes for
that program to correctly terminate, but also allows for five
bytes of arbitrary data to be embedded in the stream.

Because of the AES-128 encryption scheme, the cipher-
text is always in sixteen-byte blocks. Those sixteen bytes plus
one byte of key index and the fourteen bytes of 0xFF for the
end sequence result in a message of (16 · n + 14 + 1) bytes,
where n is the number of cipher blocks. This means that the
message transmissions will always fall into case eight from
Figs. 4 and 5. Instead of being limited to five bytes by case
three, the first nine bytes out of the fourteen bytes of 0xFF
can be used to embed information as long as the last five
bytes contain 0xFF. This method is more covert than Trojan
6.1 because the five bytes of added data appear to be part of
the ciphertext and not an extension to the end of the original
message. Both Trojans are invisible to the original encVeri-
fier program and allow that program to operate correctly in
every instance.

6.2.2 Results

The encVerifier program correctly decodes the messages
since the modified message still adheres to the message for-
mat including the correct number of stop bytes. Using a mod-
ified encVerifier program that is aware of the encoding of the
message can recover the leaked bytes.

Fig. 6 A valid RS232 message frame. The data bits are shown gener-
ically, but would either be a mark or space

6.3 RS232 multiple transmission rates

6.3.1 Explanation

The third attack on the RS232 port takes a different approach
and instead of exploiting the message structure, it exploits the
protocol itself. The RS232 protocol uses a single data wire
for transmission. When the line is idle, it is a mark condition
representing a negative voltage, logic ‘1’. Likewise, logic
‘0’ is a space condition produced by pulling the line up to
a positive voltage. The RS232 specification allows for var-
ious combinations of baud rates, data bits in each packet,
the number of stop bits, parity bits along with various other
extensions. The Alpha uses a 9600 baud rate transmission
with eight data bits in each packet and a start and stop bit
corresponding to Fig. 6. The start bit must go from a mark to
a space in order for the receiver to recognize the beginning of
the asynchronous transmission. Once the receiver recognizes
this condition, it can begin sampling the data bits at the agreed
upon baud rate in order to extract all the data from the packet.

The Alpha board and receiver currently receive at 9600
baud, but both are also able to transmit and receive data at
faster rates. This Trojan crafts packets that are transmitted
at a faster rate, yet when viewed at the slower rate appear to
be a valid transmission. In this manner, two overlaid trans-
missions allow two messages to transmit simultaneously at
different baud rates. In order to maintain transmission at two
baud rates, both transmissions must have complete frames
including a start bit, stop bit(s), and data bits in addition to
looking like valid data when reading the same data at two
different rates.

115200 baud is another standard transmission rate that is
twelve times faster than 9600 baud, which means that twelve
bits are transmitted for every bit of data transmitted at the
9600 baud rate. In order to keep from encountering framing
errors, a complete packet must fit into these twelve bits. This
packet consists of an idle mark bit, a space start bit, eight data
bits, and two stop bits for a total of twelve bits. This packet
of twelve bits must appear similar enough to the constant ‘1’
bit transmitted at the same time at 9600 baud for the encVeri-
fier program to still identify the 9600 baud rate transmission.
There is also some inflexibility in which bits can be shaped
to look like the slower transmission since the initial mark
bit and start bit must remain fixed along with two stop bits.
This means that if the 9600 baud rate transmission is trans-
mitting a mark bit, the 115200 baud rate transmission can

123



A case study in hardware Trojan design and implementation 9

Fig. 7 A valid RS232 frame at 115200 baud can be shaped like a mark
bit

Fig. 8 A valid RS232 frame at 115200 baud can be shaped like a space
bit

match it on eleven out of the twelve bits, but if it is a space,
then the best that can be managed is nine out of twelve bits.
It turns out that both of these are acceptable to appear as the
constant 9600 baud rate value. These two scenarios can be
seen in Figs. 7 and 8, respectively. In these figures, the upper
transmission packet sends at 9600 baud and the lower trans-
mission packet at 115200 baud. Since the lower transmission
is twelve times faster than the upper, the bottom transmission
frame represents a single bit of the upper transmission frame
and has been shaped to look as much like the bit from the
upper frame that it is representing.

The transmissions of the mark bit at the slower rate can be
used to embed one bit of additional information, more spe-
cifically the key. Shaping the faster transmission to mimic
the slower transmission more accurately represents the mark
bit given that eleven out of the twelve bits are the same. One
bit of information embedded in the data section of the faster
transmission results in a transmission that matches either ten
or eleven out of the twelve bits, both of which are accurate
enough be received without error at the slower transmission
rate. Our modified Alpha transmitter functions at the 115200
baud rate sending out signals that look like the 9600 baud rate
but with one bit of the key embedded in each mark bit of the
9600 baud rate transmission. This allows the encVerifier pro-
gram to verify that the 9600 baud rate transmission contains
the correct information, but a malicious program listening at
the 115200 baud rate can extract the key from the signal. Our
malicious encVerifier program verifies that the 115200 baud
rate transmission does in fact contain the key.

6.3.2 Results

When this Trojan is enabled, it transmits both the expected
data and the secret data on the same signal. The original

encVerifier program produces the expected output and each
of the received bytes is identical to the sent bytes. The mali-
cious encVerifier program listens to the signal at the 115200
baud rate in order to return the leaked key. The 115200 baud
rate signal shapes its bits to appear as a ‘1’ or as a ‘0’, so
the eight bits of data sent at the faster baud rate should all be
either zeros or ones, except for the bit of information embed-
ded in the transmission of the ones. In this way, the baud rate
of the leaked information is the same as the original trans-
mission since only one bit of information leaks for every 12
bits transmitted, but the transmission is twelve times faster.
In the transmission output, the eight bits of zeros appear as
0x00 and the 8 bits of ones as 0xFF. The 0xFE bytes represent
a leaked zero and the 0xFF bytes a leaked one.

6.4 Denial of service

6.4.1 Explanation

The goal of this attack was to create a DOS that occurs during
normal operation, but would go unnoticed during device test-
ing. This attack does not require any proximity to the device,
although closer proximity could aid in the trigger process.
The DOS attack can be implemented in many ways, but at
its core, it degrades the performance or validity of the Alpha
device. In order to implement a DOS, an acceptable location
was chosen such that it would remain hidden during the veri-
fication tests. Finding an appropriate target is actually trivial
since a modification to almost any signal produces incor-
rect output. The clock could be frozen to a value so that the
entire device quits functioning, the transmission of the data
could be corrupted so that it does not send correctly formatted
RS232 frames, even the data read from the keyboard could
be skewed so that incorrect messages were transmitted.

Our implementation of the DOS Trojan attacks the key
used to encrypt messages and accomplishes its goals of deny-
ing service and remaining hidden by making only minor
modifications to the code. The trigger used for our imple-
mentation utilizes a timer so that it intermittently functions,
switching approximately every 3.5 minutes. Finally, the user
in the field will not notice that the Trojan is active since
it only corrupts the ciphertext sent out so that the intended
receiver receives a ciphertext encrypted with a different key
than they expect. The attack makes use of a counter within the
seven segment driver routine and a slight modification of the
AES-128 routine. The seven segment driver already contains
a 12 bit counter running at 625 KHz. Adding 17 additional
bits allows a 7.15 minute cycle time for the upper order bit.
Adding a few more bits would substantially increase the cycle
time allowing it to pass validation tests. The upper order bit
is threaded through the seven segment driver as a fake enable
signal which is connected to the AES-128 core as a simi-
lar enable. Within the AES-128 module, this bit is XORed

123



10 A. Baumgarten et al.

with one of the key bits to corrupt approximately 50% of the
ciphertext.

6.4.2 Results

From the user’s perspective, the transmission appears normal,
but it transmits corrupted data. As a test, a single ‘A’ char-
acter transmitted with a random encryption key produces an
output where 62 out of the 128 bits transmitted incorrectly
(approaching the expected error rate of 50%).

6.5 Thermal leakage

6.5.1 Explanation

Another interesting route for data leakage is through thermal
transmission. In this attack, the FPGA systematically heats
up or operates at its normal state to create a binary code used
to convey information. A malicious user can place a tem-
perature probe on the FPGA and monitor the temperature
of the device to collect the leaked data (e.g. key bits). Even
though this attack requires physical access to the FPGA, it has
very real applications. These could include a scenario where
one of the Alpha devices is captured allowing the captors
to extract the key and decrypt all previous and future Alpha
transmissions. This attack would also work if a malicious
user had temporary physical access to the FPGA and was
able to extract the key at that time. It also has added stealth
compared to simply routing this information over unused
pins as many verification tests do not check for the presence
of information conveyed through heat.

The FPGA must be able to generate enough heat to be
sensed by a temperature probe, on the order of a couple of
degrees Fahrenheit. As with most devices on an FPGA, static
and dynamic current leakage account for the power dissipa-
tion and therefore heat generation. In our usage, since the con-
figuration is fixed at run-time, the static power remains very
similar between the original design and the modified thermal
leakage design. Consequently, most of the power variation
comes through the dynamic power dissipation. The model for
dynamic power dissipation is Power = C Eq × V cc2 × F
where C Eq is the total capacitive load, V cc is the supply
voltage and F is the switching frequency. In this Trojan,
a series of output pins switched at 50 MHz cause extra capac-
itive loads by driving the output pins. Also, since these are
driven quickly, extra power dissipates when compared to the
reference design causing the FPGA to heat up. To communi-
cate the key, we represent a ‘0’ as the temperature of normal
operation and a ‘1’ as the temperature during heated opera-
tion. A large counter allows the shifting of the bits of the key
to occur slowly, on the order of a minute, and provides ample
time for the FPGA to change temperature. By sampling the

temperature of the FPGA at defined intervals, we obtained
the key.

6.5.2 Results

We took samples of the temperature at defined intervals by
using a thermocouple connected to a multimeter. We then
decoded these measurements using the transmission scheme
previously described. This allowed us reclaim the key used
to encrypt the message.

6.6 AM transmission

6.6.1 Explanation

Modulating a pin on the FPGA generates an RF signal. This
signal can be used to transmit the key bits. For the RF attacks,
we utilized one of the pins of the socket since this socket is
perpendicular to the ground plane of the board which creates
a better antenna than the expansion header pins. To allow
this attack to be verified without any specialized equipment
and to demonstrate the range capabilities, it was performed
at two different frequencies. One transmission at 1560 KHz
and can be received with an ordinary AM radio. The other
attack transmits at 50 MHz and requires a specialized radio,
such as a HAM radio, to receive the signal. The AM trans-
mission has an extremely short range, on the order of inches,
when compared to the 50 MHz transmission received over
4 feet away. In both cases, touching the pin with a finger or
paper clip increases the transmission range by several orders
of magnitude. Since the two attacks are effectively the same,
we describe the AM attack in detail and only mention the
differences with the 50 MHz variant.

The data carried by the AM signal needs to be easily inter-
preted by a human. We utilized a beep scheme where a single
beep followed by a pause represents a ‘0’ and a double beep
followed by a pause represents a ‘1’. Figure 9 shows the
hardware necessary to generate the sequence of beeps based
on an input value. After the counter recycles, a shift register
shifts in the next bit of the master key. The figure also shows
the top three bits of the counter used for the eight sequential
states. The first state is a beep. The second state is always a
pause. The third state will generate a beep only if the data

Fig. 9 Hardware to generate the beep pattern

123



A case study in hardware Trojan design and implementation 11

Fig. 10 Hardware to convert beeps to an audible tone

input is a one. The remaining states generate the long pause
between beeps. For a person to be able to hear the beeps, the
beep signal needs to be converted into an audible tone and
then modulated. Figure 10 shows the logic to accomplish
this. When the beep line from Fig. 10 is a ‘1’, it is ANDed
with bits fifteen and four of the counter. Bit four toggles at a
rate of 1560 KHz, the AM carrier, and bit fifteen toggles at a
rate of 762 Hz, the audible tone. After this AND gate, a mux
enables the transmitter.

The transmission could be further obfuscated by employ-
ing a spread spectrum modulation technique such as direct-
sequence spread spectrum (DSSS) which transmits the
information not just on one frequency, but spread over the
device’s operating frequency. The result is white noise unless
the receiver knows the correct modulation values to interpret
the information.

6.6.2 Results

We viewed the signal generated by this Trojan with a standard
oscilloscope (Fig. 11). Part a of this figure shows the beeping
sequence, where two beeps represent a ‘1’ and a single beep
represents a ‘0’. Part b represents the beginning of the 760
Hz audio tone. Finally, part c shows the RF carrier wave.

6.7 50 MHz transmission

6.7.1 Explanation

The 50 MHz transmission demonstrates the range capabil-
ities tied to increasing the frequency. This increased range
has to do with the length of the transmission pin. As this pin
length approaches 1/4 wavelength of the carrier, the quality
of the radiation pattern increases as does the amount of radi-
ated energy. Transmitting at even higher frequencies such
as 300 MHz should increase the transmission distance, but it
will be capped as we approach microwave frequencies due
to the uncorrected parasitics on the board. Instead of using
bit 4 of the baud rate counter, this Trojan uses the 50 MHz
board clock to modulate the data.

Fig. 11 Measured patterns for RF signal leakage attack. a Beeping
Pattern; b 760 Hz audio tone; c RF carrier wave

6.7.2 Results

Enabling this Trojan allowed us to obtain the secret from
over 4 feet away by using a HAM radio to audibly pick up
the signal. Decoding the series of beeps allowed us to verify
the leakage of the correct information. Placing a finger or
paper clip on the pin allowed us to pick up the signal on the
other side of the building, about 50 feet away. Viewing this
transmission with an oscilloscope looked almost identical to
Fig. 11 except for the change in frequency.

6.8 LED transmission

6.8.1 Explanation

The same beep pattern as the RF Trojan was used to leak the
key with a high-frequency blinking LED. This time, instead
of using an audible tone, two different blink rates conveyed
the information. The LED blinks at 1 KHz to indicate a beep
and at 2 KHz to indicate silence. In order to make it less
noticeable to the user, the LED constantly blinks at a high fre-
quency preventing the intensity from changing when switch-
ing to transmission mode. The difference between the LED
blinking at 1 KHz and 2 KHz is not noticeable to the human
eye simply by observing the LED. A separate circuit with a

123



12 A. Baumgarten et al.

photodiode and band pass filter displays the blinking pattern
on its own LED that blinks exactly as the beeps are heard by
a person using the RF Trojans.

6.8.2 Results

This Trojan requires a specialized circuit to view the trans-
mission by shifting the frequencies in the LED. This can be
seen by placing the circuit near the LED that is transmitting
and reading the values by observing the LED of the exter-
nal circuit. The external circuit placed a few inches from the
Alpha device reveals the key used for message encryption.

7 Considered attacks

The following Trojans are a list of considered, but not imple-
mented Trojans. For some of these Trojans, steps were made
to implement them, but either their prohibitively high diffi-
culty, infeasibility, potentially destructive nature or our lack
of time and resources prevented us from implementing them.
The following short descriptions provide a high-level con-
ceptual approach to these attacks.

7.1 Keyboard LED

The Keyboard LED Trojan is similar to the LED transmis-
sion but follows a different protocol. Since the transmission
of information between the keyboard and the host device is
relatively slow, it is not possible to blink the keyboard LED at
a rate fast enough to be invisible to the eye as Trojan 6.8 does.
Instead, a different scheme must be used where one of the
LEDs remains lit for the majority of the time and then only
momentarily turned off and back on again. This could be used
to transmit data where the light, sampled at defined intervals,
transmits binary data. Preliminary tests showed that it was
possible to flicker a keyboard LED such that it was almost
impossible to see when staring directly at it and would be less
noticeable when not paying specific attention to the LED.

7.2 Blinking cursor

Similar to the above LED Trojans, the cursor on the VGA
screen blinks at a predefined rate. Altering the rate slightly
produces a code for leaking information. By varying the rate
at which the cursor blinks, the key could be extracted while
remaining hidden from the user. This attack would require
access to the device, by capturing either the Alpha or a mali-
cious user in close proximity to the device. It is a bit easier to
recover the key with this Trojan as it does not require physical
access to the FPGA (to extract the temperature information,
for example) since the VGA monitor is an external device
that is meant to be visible to the user.

7.3 VGA sync

The horizontal and vertical syncs generated by the BASYS
VGA controller create a small gap. The gap can be used to
hide data in the VGA signal such that it does not affect the
output as displayed on the monitor. A specialized decoder cir-
cuit that had access to the VGA signal would need to extract
the information from the small gap to recreate the key.

7.4 Change bitstream on PROM

The Cypress chip on the BASYS board implements the Uni-
versal Serial Bus (USB) protocol and incorporates a fully
programmable microcontroller. The Cypress chip has con-
nections to the Erasable Programmable Read Only Memory
(EPROM) used to store the FPGA configuration since the
user can program the FPGA through the USB port. A Trojan
implemented on the Cypress chip using the embedded micro-
controller could erase the EPROM memory after some time
delay causing a permanent DOS attack that can only be fixed
by reprogramming the entire board. To implement a Trojan
on the Cypress chip, firmware must be downloaded through
USB and saved in the EPROM for the Cypress chip. A soft-
ware virus could install the Trojan to the BASYS board con-
nected by USB to an infected computer.

7.5 Destruction

Another idea for a DOS attack was to physically destroy the
device when triggered. Attempts were made to get the device
to self-destruct, but none were successful. The means to this
attack varied significantly and included generating enough
heat to be damaging, creating HDL code or tweaking the
Xilinx ISE synthesis settings such that it would generate a
bitstream that was self-destructive. Some progress was made
in generating heat and was successfully implemented as a key
leakage attack, but not enough heat was able to be generated
that would damage the FPGA. Other attempts were made
to write self-damaging HDL code, but no feasible structure
could be created that violated safe FPGA configurations.

7.6 Store one bit

Each DOS attack, save the destruction of the FPGA, is tempo-
rary in that a reset of the bitstream would disable the Trojan.
The Trojan would have to be retriggered in order to begin
functioning, which might be very challenging if it required
an elaborate triggering mechanism to reinstate the Trojan.
But, if one bit of persistent data could be stored in the Alpha,
then that bit could be set upon successful triggering of the
Trojan and then used to reinstate the Trojan upon each reset.
Significant effort was put forth to find a way to store one bit
of data, but no way was successfully found. Attempts were

123



A case study in hardware Trojan design and implementation 13

Table 1 The variance in power for each Trojan compared to the
reference design for each of the states of the system

Ref mA T1 � T3 � T4 � T5 � T6 � T7 � T8 �

Reset 146.4 0.4 0.6 0.6 65.4 0.7 0.7 0.8

Init min 156.0 0.3 0.5 0.5 22.8 1.6 0.6 1.0

Init max 185.0 0.4 0.5 0.6 22.5 0.7 0.7 0.7

Encrypt 144.7 0.0 0.0 0.0 00.0 0.0 0.1 0.5

Transmit 153.1 0.4 0.6 0.6 22.2 1.0 0.8 1.2

made to communicate with the PROM from the FPGA and
with the Cypress chip used for the USB that had its own
PROM. It was discovered that it was not possible to write
directly to the Cypress PROM, but instead, a USB device
plugged into the USB port of the board was required in order
to change that PROM.

8 Judging

We presented our hardware Trojans at CSAW 2008 to a panel
of industry and academic judges along with the other con-
test entrants. The judges evaluated the Trojans on their use of
power, variance in bitstream size, stealth, and novelty. Table 1
shows each Trojan for the given states of the system and their
variance in power usage varies from the reference design.
The measurements were made using a bench multimeter in
series with the power supply. Within a 20- min window, these
values varied by 0.5 mA from the same measurement a few
minutes earlier. It should be noted that Trojan T5 (Sect. 6.5)
requires large amounts of power by the nature of its design.
In order to heat up the FPGA, heat needs to be generated
by consuming more power. The bitstreams for each of the
designs augmented with the Trojans matched the size of the
original reference design and each Trojan was well hidden
in both the source code and by inspection of the operating
device. Using these metrics, our team won first place.

9 Conclusion

Security vulnerabilities in the IC supply chain continue to
increase as both consumers and the government increase their
dependence on foreign ICs. The 2008 CSAW competition at
the Polytechnic Institute of NYU explored these vulnerabili-
ties by creating a competition where hardware hacking proofs
of concept showcase supply chain weaknesses. This paper
outlines our experiences in developing hardware Trojans,
detailing each of the attacks that helped us win first place
at the competition.

Acknowledgments The authors would like to thank Prof. Nasir
Memon at the Polytechnic Institute of NYU for creating the Computer
Security Awareness Week, and specifically the Embedded Systems

Challenge. We would also like to thank the anonymous referees and
the editor of this paper (Úlfar Erlingsson) for providing useful feed-
back and suggestions for improvement.

References

1. Cyber security awareness week 2008 (2008)
2. Abdel-Hamid, A., Tahar, S.: Fragile IP watermarking techniques.

In: Proceedings of the Conference on Adaptive Hardware and Sys-
tems (AHS), pp. 513–519 (2008)

3. Abdel-Hamid, A., Tahar, S., Aboulhamid, E.M.: A public-key
watermarking technique for IP designs. In: Proceedings of the
Conference on Design, Automation and Test in Europe (DATE),
pp. 330–335 (2005)

4. Abdel-Hamid, A., Tahar, S., Aboulhamid, E.M.: Finite state
machine IP watermarking: A tutorial. In: Proceedings of the Con-
ference on Adaptive Hardware and Systems (AHS), pp. 457–464
(2006)

5. Adee, S.: The hunt for the kill switch. IEEE Spectrum 45 (May,
2008)

6. Alkabani, Y., Koushanfar, F.: Active hardware metering for
intellectual property protection and security. In: Proceedings of
USENIX Security Symposium, pp. 1–16 (2007)

7. Alkabani, Y., Koushanfar, F., Potkonjak, M.: Remote activation of
ICs for piracy prevention and digital right management. In: Pro-
ceedings of International Conference on Computer Aided Design
(ICCAD), pp. 674–677 (2007)

8. Caldwell, A., Choi, H.-J., Kahng, A., Mantik, S., Potkonjak, M.,
Qu, G., Wong, J.: Effective iterative techniques for fingerprinting
design IP. In: IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, pp. 208–215 (2004)

9. DARPA. TRUST in integrated circuits (TIC) (2007)
10. Defense Science Board. Task force on high performance microchip

supply. 200502HPMSReportFinal.pdf (2005)
11. Di, J.: Trustable recognition of undesired threats in hardware

(TRUTH) analysis tool, for analysis of pre-synthesis behavioral and
structural VHDL designs. http://comp.uark.edu/~jdi/truth.html,
2009. Accessed on 06/2009

12. Digilent. Basys system board (2008)
13. Hwan, D., Tiri, K., Hodjat, A., Lai, B.-C., Yang, S., Schaumont, P.,

Verbauwhede, I.: AES-based security coprocessor IC in 0.18-μm
CMOS with resistance to differential power analysis side-channel
attacks. In: IEEE Transactions on Solid-State Circuits, pp. 781–792
(2006)

14. Jin, Y., Kupp, N., Makris, Y.: Experiences in hardware Trojan
design and implementation. In: Proceedings of the International
Workshop on Hardware-Oriented Security and Trust (HOST),
pp. 50–57 (2009)

15. Kahng, A., Lach, J., Mangione-Smith, W., Mantik, S., Markov, I.,
Potkonjak, M., Tucker, P., Wang, H., Wolfe, G.: Constraint-based
watermarking techniques for design IP protection. In: IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Sys-
tems, pp. 1236–1252 (2001)

16. Lach, J., Mangione-Smith, W., Potkonjak, M.: Fingerprinting dig-
ital circuits on programmable hardware. In: Proceedings of the
International Workshop on Information Hiding (IH), pp. 16–31
(1998)

17. Lach, J., Mangione-Smith, W., Potkonjak, M.: FPGA fingerprint-
ing techniques for protecting intellectual property. In: Proceedings
of the Custom Integrated Circuits Conference (CICC), pp. 299–302
(1998)

18. Lee, J., Lim, D., Gassend, B., Suh, G.E., van Dijk, M., Devadas,
S.: A technique to build a secret key in integrated circuits for

123

http://comp.uark.edu/~jdi/truth.html


14 A. Baumgarten et al.

identification and authentication applications. In: Proceedings of
VLSI Circuits, pp. 176–179 (2004)

19. Lofstrom, K., Daasch, W.R., Taylor, D.: IC identification circuit
using device mismatch. In: Proceedings of International Solid-State
Circuits Conference (ISSCC), pp. 372–373 (2000)

20. Maeda, S., Kuriyama, H., Ipposhi, T., Maegawa, S., Inoue, Y.,
Inuishi, M., Kotani, N., Nishimura, T.: An artificial fingerprint
device (AFD): a study of identification number applications uti-
lizing characteristics variation of polycrystalline silicon TFTs. In:
Electron Devices, IEEE Transactions on, pp. 1451–1458 (2003)

21. NSA. Trusted access program office (2009)
22. Oliveira, A.: Robust techniques for watermarking sequential cir-

cuit designs. In: Proceedings of the Design Automation Conference
(DAC), pp. 837–842 (1999)

23. Oliveira, A.: Techniques for the creation of digital watermarks in
sequential circuit designs. In: IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, pp. 1101–1117
(2001)

24. Qu, G., Potkonjak, M.: Intellectual property protection in VLSI
designs: theory and practice. Kluwer Academic Publishers,
Boston, MA (2003)

25. Roy, J.A., Koushanfar, F., Markov, I.L.: EPIC: Ending piracy of
integrated circuits. In: Proceedings of Design, Automation, and
Test in Europe (DATE), pp. 1069–1074 (2008)

26. Su, Y., Holleman, J., Otis, B.: A 1.6j/bit stable chip ID generating
circuit using process variations. In: Proceedings of International
Solid-State Circuits Conference (ISSCC), pp. 406–407 (2007)

27. Suh, G.E., Devadas, S.: Physical unclonable functions for device
authentication and secret key generation. In: Proceedings of Design
Automation Conference (DAC), pp. 9–14 (2007)

28. Suh, G.E., O’Donnell, C.W., Sachdev, I., Devadas, S.: Design and
implementation of the AEGIS single-chip secure processor using
physical random functions. In: Proceedings of International Sym-
posium on Computer Architecture (ISCA), pp. 25–36 (2005)

29. Torunoglu, I., Charbon, E.: Watermarking-based copyright protec-
tion of sequential functions. In: IEEE Transactions on Solid-State
Circuits, pp. 434–440 (2000)

123


	A case study in hardware Trojan design and implementation
	Abstract
	1 Introduction
	2 Competition details
	3 Background and motivation
	3.1 IC supply chain overview
	3.2 Supply chain vulnerabilities
	3.2.1 Trust
	3.2.2 Metering
	3.2.3 Theft


	4 Attacker taxonomy
	4.1 Design attacker
	4.2 Synthesis attacker
	4.3 Fabrication attacker
	4.4 Distribution attacker

	5 Threat model
	5.1 Constraints
	5.1.1 Proximity
	5.1.2 Stealth

	5.2 Triggering

	6 Implemented attacks
	6.1 RS232 end sequence information leakage
	6.1.1 Explanation
	6.1.2 Results

	6.2 RS232 end sequence information leakage 2
	6.2.1 Explanation
	6.2.2 Results

	6.3 RS232 multiple transmission rates
	6.3.1 Explanation
	6.3.2 Results

	6.4 Denial of service
	6.4.1 Explanation
	6.4.2 Results

	6.5 Thermal leakage
	6.5.1 Explanation
	6.5.2 Results

	6.6 AM transmission
	6.6.1 Explanation
	6.6.2 Results

	6.7 50MHz transmission
	6.7.1 Explanation
	6.7.2 Results

	6.8 LED transmission
	6.8.1 Explanation
	6.8.2 Results


	7 Considered attacks
	7.1 Keyboard LED
	7.2 Blinking cursor
	7.3 VGA sync
	7.4 Change bitstream on PROM
	7.5 Destruction
	7.6 Store one bit

	8 Judging
	9 Conclusion
	Acknowledgments
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 149
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 149
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 599
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
    /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
    /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
    /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
    /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


